Express the product of cos 30°and 45° in simple simplest radical form

This means the multiplication of the cos of the particular angles

\( cos(30^{o}) = \frac{ \sqrt{3} }{2}, cos(45^{o}) = \frac{ \sqrt{2} }{2} \)

So, multiplying them together is

\( = \frac{ \sqrt{3} }{2} *\frac{ \sqrt{2} }{2} = \frac{ \sqrt{6} }{4} \)

\( cos30^0= \frac{ \sqrt{3} }{2} \ \ \ and\ \ \ cos45^0= \frac{ \sqrt{2} }{2}\\\\cos30^0\cdot cos45^0= \frac{ \sqrt{3} }{2}\cdot \frac{ \sqrt{2} }{2}= \frac{ \sqrt{3} \cdot \sqrt{2} }{2\cdot 2}=\frac{ \sqrt{6} }{4} \)

RELATED: