Find the value of W if A=LW, A=8m^2, and L=4m

\( A=LW\ \ \ \ |divide\ both\ sides\ by\ L\\\\W=\frac{A}{L}\\===============\\\\A=8m^2;\ L=4m\\\\W=\frac{8m^2}{4m}=2m^{2-1}=2m \)


A=lW    divide both sides by L

W=A / L
-
A=8m^2; L=4m

W=(8m^2) / (4m) = 8 / 4 * m^2 / m =2m

\( A=8 \ m^2, \ \ L=4 \ m \\\\ A=LW\\\\8 \ [m^2]= 4 \ [m ]\cdot W \ \ / :(4 \ [m]) \\ \\W=\frac{8 }{4} \cdot \frac{[m^{2}]}{[m]}= 2 \ m \\ \\\\Answer : \ W =2 \ m \)






\( A=LW\ \ \ \ |divide\ both\ sides\ by\ L\\\\W=\frac{A}{L}\\===============\\\\A=8m^2;\ L=4m\\\\W=\frac{8m^2}{4m}=2m^{2-1}=2m \)   A=lW    divide both sides by L

RELATED: