Suppose theta= 11pi/12. use the sum identity to find the exact value of sin theta?

The better way is, first we have to find the equivalent in degrees

\( 2\pi=360º \)

\( \frac{11\pi}{12}=345º \)

now we can change this value to \( -15º \)

how do we get an angle like this?

\( 30º-45º=-15º \)

then

\( sin(30º-45º)=sin(30º)*cos(45º)-sin(45º)*cos(30º) \)

\( \begin{matrix}sin(30º)=\frac{1}{2} \\ \sin(45º)=cos(45º)=\frac{\sqrt{2}}{2}\end{matrix}\\ \cos(30º)=\frac{\sqrt{3}}{2} \)

now we replace this values

\( sin(-15º)=\frac{1}{2}*\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}*\frac{\sqrt{3}}{2} \)

\( sin(-15º)=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4} \)

\( \boxed{\boxed{sin(-15º)=sin(345º)=\frac{\sqrt{2}-\sqrt{6}}{4}}} \)

RELATED: