if the equation is h= -2x^2 + 12x -10

how do I find the max height?

One other way to solve this question is finding the derivative

\( h=-2x^2+12x-10 \)

\( h’=-4x+12 \)

now we have to find when this function will be zero

\( -4x+12=0 \)

\( \boxed{\boxed{x=3}} \)

now we just replace this value at our initial function

\( h=-2x^2+12x-10 \)

\( h_{max}=-2*(3)^2+12*3-10 \)

\( h_{max}=-18+36-10 \)

\( \boxed{\boxed{h_{max}=8}} \)

The maximum height is the ordinate value of the vertex of the parabola, ie: yV

Calculating yV:

\( y_V=\frac{-\Delta}{4a}\\ \\ y_V=-[\frac{12^2-4*(-2)*(-10)]}{4*(-2)}=\frac{-(144-80)}{-8}=\frac{-64}{-8}=8 \)


RELATED: