Two objects were lifted by a machine. One object had a mass of 2 kilograms and was lifted at a speed of 2m/sec. the other had a mass of 4 kilograms and was lifted at a rate of 3m/sec.

Sadly, after giving all the necessary data, you forgot to ask the question.
Here are some general considerations that jump out when we play with
that data:

For the first object:
The object’s weight is (mass) x (gravity) = 2 x 9.8 = 19.6 newtons
The force needed to lift it at a steady speed is 19.6 newtons.
The potential energy it gains every time it rises 1 meter is 19.6 joules.
If it’s rising at 2 meters per second, then it’s gaining 39.2 joules of
     potential energy per second.
The machine that’s lifting it is providing 39.2 watts of lifting power.
The object’s kinetic energy is 1/2 (mass) (speed)² = 1/2(2)(4) = 4 joules.

For the second object:
The object’s weight is (mass) x (gravity) = 4 x 9.8 = 39.2 newtons
The force needed to lift it at a steady speed is 39.2 newtons.
The potential energy it gains every time it rises 1 meter is 39.2 joules.
If it’s rising at 3 meters per second, then it’s gaining 117.6 joules of
     potential energy per second.
The machine that’s lifting it is providing 117.6 watts of lifting power.
The object’s kinetic energy is 1/2 (mass) (speed)² = 1/2(4)(9) = 18 joules.


RELATED: