1. Solve this problem: –282 – (+1,017) =? A. 735
B. –1,299
C. –735
D. 1,299
2. Sue has a balance of $35 in her checking account. She writes one check for$10, and three checks for $9 each. What is her balance now? A. –$2 B. $54 C. –$11 D. $18 3. Solve this inequality: 3b – 7 < 32 A. b < 13 B. b < 5 C. b < 39 D. b < 8.33 4. Simplify and solve this equation: 4m + 9 + 5m – 12 = 42. A. m = –5 B. m = 4 C. m = -4 D. m = 5 5. Simplify this expression: 13 + (–12) – (–5) =? A. 30 B. –30 C. –6 D. 6 ￼￼￼￼6. If four times a number plus 3 is 11, what is the number? ￼A. 5 B. 2 C. 4 D. 16 7. Solve the inequality: 12p + 7 > 139 A. p > 11 B. p > 154 C. p > 18 D. p > 12 8. Solve the equation: 7x = 42. A. x = 7 B. x = 6 C. x = – 7 D. x = – 6 9. Solve this inequality: 9h + 2 < –79. A. h < – 9 B. h < –10 C. h < 10 D. h < 9 10. Given the formula D = ABC, what is the formula for C? A. C = AB ÷ D B. C = D ÷ AB C. C = AD ÷ C D. C = ABD 11. Solve this equation: y/9 + 5 = 0. A. y = –5 B. y = –45 C. y = 45 D. y = 5 12. Solve the equation: 12y = 132. A. y = 11 B. y = 11/12 C. y = 144 D. y = 1/11 ￼13. Simplify and solve this equation for q: 3q + 5 + 2q – 5 = 65. A. q = 23 B. q = 11 C. q = 15 D. q = 13 14. Given the formula K = LMN, what is the formula for M? A. M = K/LN B. M = LN/K C. M = KL/N D. M = LNK 15. Solve the equation: h/9 = 7. A. h = 1 2/7 B. h = –63 C. h = 63 D. h = 7/9 16. Simplify this expression: 4p + 9 + (–7p) + 2 =? A. 11p + 11 B. 3p + 11 C. –3p + 11 D. 3p + 7 17. Find the value of y in this equation: 16y = 164. A. 32 B. 180 C. 10 1/4 D. 16 1/4 18. Solve this equation: 4y + 228 = 352. A. y = 145 B. y = – 31 C. y = 3 D. y = 31 19. Given the formula E = IR what is the formula for R? A. R = I ÷ E B. R = IE C. R = EI D. R = E ÷ I 20. Solve the following equation: 6y – 20 = 2y – 4. A. y = 3 B. y = 4 C. y = 16 D. y = 2 1.282 -(1017) = -282 - 1017 = - 1299 2. 35 - (10 + 3(9)) = 35 - (10 + 27) = 35 - 37 = -2 3. 3b - 7 < 32.3b < 32 + 7.3b < 39. b < 39/3. b < 13 4. 4m + 9 + 5m - 12 = 42.9m - 3 = 42.9m = 42 + 3.9m = 45. m = 45/9. m = 5 5. 3 + (-12) - (-5) = 3 - 12 + 5 = 8 - 12 = -4 6. 4 times a number plus 3 is 11.4x + 3 = 11.4x = 11 - 3.4x = 8. x = 8/4. x = 2 7. 12p + 7 > 139.12p > 139 - 7.12p > 132. p > 132/12. p > 11 8. 7x = 42. x = 42/7. x = 6 9. 9h + 2 < -79.9h < -79 - 2.9h < -81. h < -81/9. h < - 9 10. D = ABC. C = D/AB 11. y/9 + 5 = 0. y/9 = -5. y = -5*9. y = -45 12. 12y = 132. y = 132/12. y = 11 13. 3q + 5 + 2q - 5 = 65.5q = 65. q = 65/5. q = 13 14. K = LMN. M = K/LN 15. h/9 = 7. h = 7*9. h = 63 16. 4p + 9 + (-7p) + 2 = 4p + 9 - 7p + 2 = -3p + 11 17. 16y = 164. y = 164/16. y = 10.25 or 10 1/4 18. 4y + 228 = 352.4y = 352 - 228.4y = 124. y = 124/4. y = 31 19. E = IR. R = E/I 20. 6y - 20 = 2y - 4.6y - 2y = -4 + 20.4y = 16. y = 16/4. y = 4 The correct answers are: (1) (Option B) -1299 (2) (Option A) -2 (3) (Option A) b < 13 (4) (Option D) m = 5 (5) (Option D) 6 (6) (Option B) 2 (7) (Option A) p > 11 (8) (Option B) x = 6 (9) (Option A) h < –9 (10) (Option B) C = D ÷ AB (11) (Option B) y = –45 (12) (Option A) y = 11 (13) (Option D) q = 13 (14) (Option A) M = K/LN (15) (Option C) h = 63 (16) (Option C) –3p + 11 (17) (Option C) $$10\frac{1}{4}$$ (18) (Option D) y = 31 (19) (Option D) R = E ÷ I (20) (Option B) y = 4 Explanations: (1) The Given Expression: -282 - (+1017) = -282 - 1017 = -1299 (Option B) (2) The total balance =$35

One check = $10 Three checks = 3 *$9 = $27 Balance now = Total balance - One check + Three check =$35 - $10 -$27 = -2 (Option A)

(3) The given expression:

3b – 7 < 32

3b -7 + 7 < 32 + 7

3b < 39

Divide by 3 on both sides:

$$\frac{3b}{3} <\frac{39}{3}$$

b < 13 (Option A)

(4) The given expression:

4m + 9 + 5m – 12 = 42

9m = 42 + 12 - 9

9m = 45

Divide both sides with 9:

$$\frac{9m}{9} =\frac{45}{9} \\ m=5$$

The correct answer is m=5 (Option D)

(5) The given expression:

13 + (–12) – (–5)

= 13 - 12 + 5

= 6 (Option D)

(6) Mathematically, we can write "four times a number plus 3 is 11" as:

4x + 3 = 11

Where,

x = The number we require

4x = 11 - 3

4x = 8

x = 2 (Option B)

(7) The given expression:

12p + 7 > 139

Subtract 7 on both sides:

12p + 7 - 7 > 139 -7

12p > 132

Divide 12 on both sides:

$$\frac{12p}{12} >\frac{132}{12}$$

p > 11 (Option A)

(8) The given equation:

7x = 42

Divide the equation with 7 on both sides:

$$\frac{7x}{7} =\frac{42}{7}$$

x = 6 (Option B)

(9) The given expression:

9h + 2 < –79

Subtract 2 on both sides:

9h + 2 - 2 < -79 - 2

9h < -81

h < -9 (Option A)

(10) The given equation:

D = ABC

Now divide both sides with AB on both sides:

$$\frac{D}{AB} =\frac{ABC}{AB} \\ C =\frac{D}{AB}$$

Hence C = D ÷ AB (Option B)

(11) Given equation:

$$\frac{y}{9} + 5 = 0$$

Subtract 5 on both sides:

$$\frac{y}{9} +5 -5 = 0 -5$$

y = -5*9 = -45

y = -45 (Option B)

(12) Given equation:

12y = 132

Divide both sides by 12:

$$\frac{12y}{12} =\frac{132}{12}$$

y = 11 (Option A)

(13) The given equation:

3q + 5 + 2q – 5 = 65

5q = 65

Divide both sides with 5 and simplify:

q = 13 (Option D)

(14) Given formula:

K = LMN

To find M, divide both sides with LN:

$$\frac{K}{LN} =\frac{LMN}{LN} \\ M = \frac{K}{LN}$$

Hence the correct answer is $$M = \frac{K}{LN}$$ (Option A)

(15) Given formula:

h/9 = 7

Multiply both sides with 9:

h = 7 * 9

h = 63 (Option C)

(16) Given expression:

4p + 9 + (-7p) + 2

4p + 9 -7p +2

-3p + 11 (Option C)

(17) The given formula:

16y = 164

Divide both sides with 16:

$$\frac{16y}{16} =\frac{164}{16} \\ y = 10\frac{1}{4}$$

Hence the correct answer is (Option C) $$y = 10\frac{1}{4}$$

(18) Given equation:

4y + 228 = 352

Subtract both sides with 228:

4y + 228 - 228 = 352 - 228

4y = 124

Divide both sides by 4 and simplify:

y = 31 (Option D)

(19) The given formula:

E = IR

To find R, divide both sides with I:

R = E ÷ I (Option D)

(20) Given equation:

6y - 20 = 2y - 4

=> 6y - 2y = -4 + 20

=> 4y = 16

Divide both sides with 4 and simplify:

y = 4 (Option B)

RELATED: